Neighborhoods of Points in Codimension-One Submanifolds Lie in Codimension-One Spheres
نویسندگان
چکیده
منابع مشابه
Codimension One Spheres Which Are Null Homotopic
Grove and Halperin [3] introduced a notion of taut immersions. Terng and Thorbergsson [5] give a slightly different definition and showed that taut immersions are a simultaneous generalization of taut immersions of manifolds into Euclidean spaces or spheres, and some interesting embeddings constructed by Bott and Samelson [1]. They go on to prove many theorems about such immersions. One particu...
متن کاملAPPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملCodimension One Symplectic Foliations
We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.
متن کاملCodimension One Branes
We study codimension one branes, i.e. p-branes in (p + 2)-dimensions, in the superembedding approach for the cases where the worldvolume superspace is embedded in a minimal target superspace with half supersymmetry breaking. This singles out the cases p = 1, 2, 3, 5, 9. For p = 3, 5, 9 the superembedding geometry naturally involves a fundamental super 2-form potential on the worldvolume whose g...
متن کاملLie Algebras of Vector Fields and Codimension One Foliations
LIE ALGEBRAS OF VECTOR FIELDS AND CODIMENSION ONE FOLIATIONS
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1988
ISSN: 0002-9939
DOI: 10.2307/2047131